Arquitectura

EN BÚSQUEDA DE LOS MAESTROS MARCO VITRUVIO POLIÓN parte 36

#Arquitectura
“Ni el movimiento rectilíneo sin el circular, ni el movimiento circular sin el rectilíneo pueden lograr el levantamiento de los pesos.”

 

 

Carlos Rosas C / @CarlosRosas_C   
carlos.rc@inperfecto.com.mx

 

Nos encontramos ya en el libro X  de la obra los Diez Libros de Arquitectura de Vitruvio Polión, la gran cantidad de temas que aborda esta extraordinaria obra nos han dejado claro que el conocimiento que el arquitecto debe manejar para llevar a cabo su labor va más allá de la geometría o la formalidad del lenguaje arquitectónico, aspecto que Vitruvio ha señalado en repetidas ocasiones a lo largo ya de los nueve libros que antecedieron a este libro X.

 

La extensión de este Libro X corona toda la obra con 16 capítulos que describen minuciosamente máquinas para construcción, hidráulica y armamento de defensa, finalmente dentro del quehacer del arquitecto la versatilidad deberá ser una de las virtudes con las que deberá contar a lo largo de su evolución como constructor.

 

Nos acercamos al desenlace de una obra extraordinaria llena de conocimiento. Sigan con nosotros en el especial de arquitectura “En búsqueda de los maestros” sobre los Diez Libros de Arquitectura de Marco Vitruvio Polión. 

 

LIBRO X

CAPÍTULO TERCERO

LA TRACCIÓN RECTILÍNEA Y CIRCULAR

 

He hecho una breve exposición, con los datos que he considerado necesarios, sobre los sistemas de tracción. Cuando actúan de manera concordante, como coprincipios, sus movimientos y capacidades producen estos efectos, aun siendo dos factores distintos y opuestos: uno es el movimiento rectilíneo -en griego, «eutheiam»– y otro, el movimiento circular -en griego, «cycloten»-. Ahora bien, ni el movimiento rectilíneo sin el circular, ni el movimiento circular sin el rectilíneo pueden lograr el levantamiento de los pesos.

 

Pasaré ahora a aclararlo de modo que se comprenda: se colocan unos pequeños ejes en las poleas, como centros, y se ajustan dentro de los aparejos; se tira de una cuerda en línea recta, después de pasarla alrededor de estos aparejos; se enrolla en un rodillo y al ir girando las palancas levanta los pesos hacia lo alto. Introducidas las espigas o puntas del rodillo en los aros, como centros, y las palancas en sus orificios, se hacen girar circularmente dichas puntas, como si fuera un torno, y así se levantan los pesos. Es como si se aplicara una palanca de hierro a un peso que resulta imposible moverlo aun con la colaboración de muchos brazos; pues bien, colocando debajo el punto de apoyo en un lugar próximo, como si fuera un centro -en griego, «hypomochlion»– y colocando un extremo de la palanca bajo el peso -me refiero al extremo más corto que queda entre el punto de apoyo y el peso- simplemente con la fuerza de un solo hombre aplicada sobre el brazo más largo de la palanca, se levanta el peso.

 

La causa de levantar así un peso estriba en que el brazo más corto de la palanca está colocado debajo del peso y la presión se ejerce sobre el brazo más largo, el que está a mayor distancia del punto de apoyo, que actúa como centro. Al realizar el movimiento circular -o en forma de cruz- de la palanca sobre el punto de apoyo, se posibilita el que con unas pocas manos se equilibre una carga de gran peso. Si el brazo más corto de la palanca de hierro se colocara bajo el peso y el brazo más largo desde el punto de apoyo no se presionara hacia abajo sino hacia arriba, entonces el brazo más corto apoyado en el suelo tendrá a éste como peso y el ángulo de este mismo peso actuará como punto de apoyo.

 

POLEA ROMANA

 

De esta forma el peso no experimentará una elevación tan fácilmente como si se presionara hacia abajo, es decir, en sentido contrario. Por tanto, si el brazo más corto, se colocará bajo el peso más cerca del hypomoclión y si el brazo más largo recibiera la presión en las proximidades del centro, no será posible levantar el peso, a no ser que -como antes hemos dicho- se equilibre la longitud de la palanca desde su extremo y no se realice la presión tan cerca del centro.

 

Todo esto se puede comprobar en las balanzas denominadas «estateras» o «romanas». Cuando el asa, que es el centro, está colocada cerca del brazo que sostiene el peso y el cursor se desplaza hacia la otra parte del brazo, al moverlo por los puntos marcados, cuanto más se desplace hacia el extremo equilibrará un peso realmente gravoso con una pesa bastante menor, debido a la nivelación que se alcanza del brazo y al desplazamiento del cursor respecto del centro. El escaso peso del cursor adquiere en un instante una mayor fuerza y propicia el que suavemente y sin brusquedad se eleve un peso mayor hacia lo alto.

 

ESTATERA O ROMANA

 

Exactamente igual, el timonel de un gran barco mercante, sujetando el brazo del timón -en griego «oiax»– simplemente con una mano, lo mueve con habilidad en torno al punto central, donde está situado el punto de apoyo y conduce el barco aunque esté cargado con abundantes y pesadas mercancías y maderas. Cuando sus velas cuelgan a media altura del mástil, el barco no puede llevar una gran velocidad; pero cuando las antenas se suben a lo más alto del mástil, entonces el barco avanza a mayor velocidad; la causa de este desigual avance se debe a que las velas reciben el ímpetu del viento no en las proximidades del pie del mástil, que actúa como centro, sino en la parte más alta y a bastante distancia de él.

 

Así como en la palanca colocada debajo del peso, si se ejerce la fuerza por su parte central resulta difícil de mover y cuando se presiona su brazo más largo, justo en su extremo, con facilidad se levanta un peso, de igual modo cuando las velas están situadas a la mitad del mástil resultan menos eficientes; pero, cuando se colocan en la parte más alta del mástil, al estar desplegadas a gran distancia del centro, con la misma fuerza del viento y no mayor, avanza más rápidamente, porque el viento empuja en la parte extrema del mástil. Lo mismo sucede con los remos amarrados con cuerdas de cáñamo a los escálamos: cuando son empujados hacia adelante y hacia atrás con las manos, como las palas extremas de los remos penetran en las olas del mar a cierta distancia del centro, hacen avanzar la nave en línea recta con sus fuertes impulsos y la proa va cortando la porosidad del agua.

 

BARCO DE VELA MERCANTE ROMANO

 

Cuando se trata de transportar grandes pesos por cuadrillas de cuatro o seis porteadores, previamente comprueban con exactitud el punto medio de sus varas de transporte, con el fin de que quede dividido el peso sólido de la carga en una adecuada proporción y cada porteador cargue sobre sus hombros una parte igual de todo el peso. En la mitad de estas varas de transporte, donde se sujetan las correas de cuero de los porteadores, marcan con clavos unas referencias que impiden el que la carga se caiga hacia uno u otro lado. Si la carga se desplaza desde el centro, su peso recae sobre el porteador hacia el que se ha deslizado; lo mismo sucede con el peso de la balanza romana, cuando el cursor se desplaza hacia el extremo de su brazo.

 

Por la misma razón, cuando los bueyes de carga arrastran un peso, su esfuerzo será proporcionado si los yugos están equilibrados por su parte central, mediante las correas que los sujeten. Si las fuerzas de los bueyes fueran desiguales, al tirar uno con más potencia hace que el otro vaya más agobiado; pero si se deslizan las correas, una parte del yugo queda más larga con el fin de ayudar al buey más débil. De esta manera, si las correas no están colocadas en medio, tanto en las varas de los porteadores como en los yugos, sino desplazadas hacia una parte, la que queda más lejos del centro será más larga y la más próxima, más corta. Si hacemos girar ambas partes tomando como centro el punto hacia el que se ha desplazado la correa, la parte más larga trazará un círculo mayor, y la más corta, menor.

 

Así como es más difícil y costoso mover unas ruedas de pequeño diámetro, así también las varas de los porteadores y los yugos oprimen con más fuerza el cuello en la parte que guardan menor distancia desde el centro hasta su extremo; y la parte que queda a mayor distancia desde el centro alivia el peso de la carga de los porteadores y de los bueyes. Pues bien, todos estos aparatos realizan un movimiento rectilíneo y circular respecto a su centro y exactamente por la misma causa los carros, carretas, tambores, ruedas, tornos de prensar, máquinas de guerra, ballestas y otras muchas máquinas producen los objetivos que se desean moviéndose con relación a su centro, bien en línea recta, bien en giro circular.

 

BALLESTA ROMANA

 

LIBRO X

CAPÍTULO CUARTO

MÁQUINAS PARA ELEVAR AGUA.

 

Pasaré a explicar ahora los órganos que se han ideado para extraer agua, así como los diversos tipos en los que se han clasificado. En primer lugar, voy a tratar sobre el «tympano» (o tambor). Ciertamente no eleva el agua a gran altura, pero sí saca un gran caudal de agua en breves momentos. Se fabrica un eje con el torno o con el compás, reforzando sus extremos con láminas de hierro. Rodeando su parte central se coloca un tambor hecho con tablas ensambladas entre sí, que se encajará sobre unos troncos con sus puntas protegidas con láminas de hierro, debajo de los bordes del eje. 

 

SISTEMA DE TAMBOR O “TYMPANO”

 

En la parte hueca del tambor se instalan ocho tablas transversales desde el eje hasta la circunferencia del tambor, que dividan al tambor en espacios iguales. El frente exterior del tambor quedará cerrado mediante unas tablas, dejando unas aberturas de medio pie por las que accederá el agua a su interior. De igual modo, a lo largo del eje se dejan unos orificios que se correspondan con cada uno de los espacios. Se dejará todo bien embreado, como se hace con las naves, y se hará girar por unos hombres pisando encima. Así el agua entra por los orificios abiertos en el frente, va a parar a las aberturas del eje y se vierte sobre un barreño de madera, colocado debajo, mediante un canal que lo conectará. Así se suministra agua abundante para el riego, o bien para licuar la sal en las salinas.

 

Si se tuviera que elevar el agua a mayor altura, se pondrá en práctica un método análogo. Se construirá una rueda en torno al eje, del tamaño que se adecue a la altura exigida. En el perímetro circular de la rueda se fijarán unas cubetas, protegidas con pez y con cera. Cuando la rueda comience a girar por la acción de los hombres que la voltean con sus pies, las cubetas llenas de agua, elevándose hacia lo alto y descendiendo hacia la parte más baja, derramarán en el depósito la cantidad de agua que hayan recogido. Pero, si se tuviera que suministrar agua a lugares más elevados, se colocará en torno al eje de la misma rueda una doble cadena de hierro, que llegue hasta el nivel más bajo, y se colgarán en la cadena unas cubetas de bronce, con una capacidad de un congio. Así, al ir girando la rueda enrollará la cadena en torno al eje, lo que provocará la elevación de las cubetas hacia lo alto, y cuando alcancen el eje, forzosamente se darán la vuelta y derramarán en el depósito el agua que hayan elevado.

 

SISTEMA DE CADENA PARA ELEVACIÓN DE AGUA

 

LIBRO X

CAPÍTULO QUINTO

LAS NORIAS.

 

Siguiendo un proceso parecido se fabrican unas ruedas fluviales, tal como lo hemos descrito. En torno a su parte frontal se fijan unas paletas, que, al ser empujadas por la corriente del río, inician un movimiento progresivo provocando el giro de las ruedas; sus cubetas van sacando el agua que la elevan hacia la parte más alta, sin la presencia y sin el esfuerzo de operarios; sencillamente, al girar por el impulso de la corriente del río, suministran el agua que se necesite.

 

SISTEMA DE NORIA

 

El movimiento de las norias (molinos de agua) se basa en los mismos principios, excepto en que llevan un tambor dentado en un extremo del eje. El tambor está colocado verticalmente y gira al mismo tiempo que la rueda. Junto a este tambor se halla un segundo tambor mayor, colocado, horizontalmente a lo largo del anterior con el que está engarzado. Así, los dientes del tambor ajustado al eje, al empujar los dientes del tambor horizontal provocan el movimiento circular de las muelas. Si colgamos una tolva en esta máquina, suministrará trigo a las muelas y, gracias a este mismo movimiento giratorio, obtendremos harina.

 

LIBRO X

CAPÍTULO SEXTO.

CÓCLEA PARA ELEVAR AGUA.

 

También se puede utilizar una cóclea especial, que saca gran cantidad de agua, aunque no la eleva a la misma altura que la rueda. Veamos su estructura: se toma un madero cuya longitud en pies sea igual a los dedos de su grosor y se redondea con toda exactitud. Con un compás se dividirán sus puntas en un cuarto de círculo y después en un octavo; así nos quedarán ocho partes; se trazarán cuatro diámetros de manera que, colocado el madero en posición horizontal, se correspondan exactamente las líneas de un extremo con las de otro; según sea el espacio que mida la octava parte de la circunferencia del madero, exactamente lo mismo medirán los espacios que separen las líneas longitudinales. Situado el madero en posición horizontal, se trazarán unas líneas desde -uno hasta el otro extremo, que se correspondan con toda precisión. De esta manera, los espacios delimitados tanto circular como longitudinalmente serán iguales. Donde se dé la intersección de las líneas longitudinales con las circulares, se marcarán unos puntos.

 

CÓCLEA O TORNILLO DE ARQUÍMEDES

 

Después de señalar con toda exactitud dichos puntos, se tomará una regla delgada de sauce o bien de sauzgatillo, e, impregnada de pez líquida, se fijará en el primer punto de la intersección. Se pasa después oblicuamente por la siguiente intersección de las líneas longitudinales y circulares; y haciéndola pasar progresiva Y- ordenadamente por cada uno de los puntos, rodeando su contorno circular, se colocará en cada uno de los puntos de intersección, hasta que acceda a la línea que diste ocho puntos respecto a la línea primera, en la que quedará fijada. Siguiendo este proceso, según avanza oblicuamente a lo largo de los ocho puntos de la circunferencia, avanzará exactamente igual longitudinalmente hasta el octavo punto. Se fijarán unas reglas oblicuamente a lo largo de su longitud y de su circunferencia en cada una de las intersecciones y se horadarán unos canales o cavidades curvados a lo largo de las ocho divisiones de su grosor; tales canales representan una exacta y natural reproducción de la concha de un caracol.

 

USO DE CÓCLEA

 

Siguiendo este trazado, se van fijando otras varitas sobre las anteriores, impregnadas también de pez líquida, colocando unas sobre otras hasta formar un grosor igual a la octava parte de su longitud. Sobre estas varitas se clavarán unas tablas que colocaremos alrededor para que cubran perfectamente todo el conjunto de espirales. Se revestirán también con pez y se sujetarán con aros de hierro, para protegerlas de la fuerza del agua. Las dos puntas del madero se asegurarán con planchas de hierro. A derecha e izquierda de la concha de caracol, se colocarán unos maderos reforzándolos con otros transversales, clavados en cada uno de sus extremos. 

 

En estos maderos transversales se abrirán unos agujeros forrados de hierro, donde se inserten las puntas de los ejes; las cócleas inician así sus movimientos giratorios, gracias a la acción de unos hombres que pedalearán sobre unos salientes de su circunferencia. La elevación de la máquina se ajustará en su inclinación a las reglas del triángulo rectángulo, fijadas por Pitágoras, es decir, que la longitud de la cóclea se divida en cinco partes y que la cabeza de la misma sobresalga tres de esas cinco partes; desde la perpendicular hasta la boca inferior quedará una separación equivalente a cuatro partes. En la figura descrita al final del libro, y trazada al mismo tiempo, se muestra la manera más adecuada de fabricar esta máquina.

 

 

Con la mayor claridad que he podido he descrito cómo se fabrican los órganos para sacar agua, los pasos precisos para su construcción y los medios que provocan sus movimientos giratorios, que nos proporcionan innumerables servicios; todo, con el objetivo de ofrecer una mejor información.

 

#InPerfecto